Subscribe to RSS
DOI: 10.1055/a-2705-6850
π–π Interactions as Noncovalent Tools in Selective Catalysis
Authors
Supported by: National Research Foundation of Korea RS-2024-00342503
Funding Information This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2024-00342503).


Abstract
This short review describes recent advances in π–π stacking interaction-enabled catalysis for selective transformations. Owing to their charge-independent and spatially accessible nature, π–π interactions have been utilized to control chemo-, regio-, and stereoselectivity in a range of transformations. Selected examples are presented to illustrate how these noncovalent forces modulate transition-state geometry or stabilize key intermediates in C–C, C–O, and C–N bond formations, as well as in reductions and hydrogenation reactions.
Keywords
π–π Interactions - Noncovalent interactions - Selective catalysis bond formation - Selective reductionPublication History
Received: 18 July 2025
Accepted after revision: 02 September 2025
Accepted Manuscript online:
19 September 2025
Article published online:
22 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Sak MH, Jacobsen EN. Chem Rev. 2025; 125: 8319
- 2 Toste FD, Sigman MS, Miller SJ. Acc Chem Res 2017; 50: 609
- 3 Mahmudov KT, Pombeiro AJ. Chem Eur J 2023; 29: e202203861
- 4 Davis HJ, Phipps RJ. Chem Sci 2017; 8: 864
- 5 Loh CC. Nat Rev Chem 2021; 5: 792
- 6 Müller-Dethlefs K, Hobza P. Chem Rev 2000; 100: 143
- 7 Wheeler SE, Seguin TJ, Guan Y, Doney AC. Acc Chem Res 2016; 49: 1061
- 8 Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PW. Chem Soc Rev 2014; 43: 1660
- 9 Krenske EH, Houk K. Acc Chem Res 2013; 46: 979
- 10 Fanourakis A, Docherty PJ, Chuentragool P, Phipps RJ. Acs Catal 2020; 10: 10672
- 11 Reddi Y, Tsai C-C, Avila CM, Toste FD, Sunoj RB. J Am Chem Soc 2018; 141: 998
- 12 Emsley J. Chem Soc Rev 1980; 9: 91
- 13 Doyle AG, Jacobsen EN. Chem Rev 2007; 107: 5713
- 14 Zhou Y, Xu X, Sun H. et al. Nat Commun 2021; 12: 1953
- 15 Huang B, He Y, Levin MD, Coelho JA, Bergman RG, Toste FD. Adv Synth Catal 2020; 362: 295
- 16 Guo H, Loh CC. Sci Bull 2024; 69: 3308
- 17 Politzer P, Lane P, Concha MC, Ma Y, Murray JS. J Mol Model 2007; 13: 305
- 18 Cavallo G, Metrangolo P, Milani R. et al. Chem Rev 2016; 116: 2478
- 19 Marcus Y, Hefter G. Chem Rev 2006; 106: 4585
- 20 Macchioni A. Chem Rev 2005; 105: 2039
- 21 Reid JP, Hu M, Ito S. et al. Chem Sci 2020; 11: 6450
- 22 Huang M, Yang T, Paretsky JD, Berry JF, Schomaker JM. J Am Chem Soc 2017; 139: 17376
- 23 Martinez CR, Iverson BL. Chem Sci 2012; 3: 2191
- 24 Read JA, Ball TE, Miller BR, Jacobsen EN, Sigman MS. J Org Chem 2024; 89: 17237
- 25 Long EC, Barton JK. Acc Chem Res 1990; 23: 271
- 26 Kearney PC, Mizoue LS, Kumpf RA, Forman JE, McCurdy A, Dougherty DA. J Am Chem Soc 1993; 115: 9907
- 27 Claessens CG, Stoddart JF. J Phys Org Chem 1997; 10: 254
- 28 Jones GB. Tetrahedron 2001; 57: 7999
- 29 Xu J. Molecules 2024; 29: 1454
- 30 Dougherty DA. Chem Rev 2025; 125: 2793
- 31 Luo N, Ao YF, Wang DX, Wang QQ. Chem Eur J 2022; 28: e202103303
- 32 Wang C-S, Dixneuf PH, Soulé J-FO. Chem Rev 2018; 118: 7532
- 33 Shi W, Liu C, Lei A. Chem Soc Rev 2011; 40: 2761
- 34 Scheffler U, Mahrwald R. Chem Eur J 2013; 19: 14346
- 35 Tang W, Patel ND, Xu G. et al. Org Lett 2012; 14: 2258
- 36 Li B, Aliyu MA, Gao Z. et al. Org Lett 2020; 22: 4974
- 37 Shin SH, Baek EH, Hwang G-S, Ryu DH. Org Lett 2015; 17: 4746
- 38 Di X, Wang Y, Wu L. et al. Org Lett 2019; 21: 3018
- 39 Wang Y, Deng L-F, Zhang X, Niu D. Org Lett 2019; 21: 6951
- 40 Miró J, Gensch T, Ellwart M. et al. J Am Chem Soc 2020; 142: 6390
- 41 Jensen KB, Roberson M, Jørgensen KA. J Org Chem 2000; 65: 9080
- 42 Hoshi T, Ota E, Inokuma Y, Yamaguchi Y. Org Lett 2019; 21: 10081
- 43 Qiu J, Wu D, Karmaker PG. et al. Org Lett 2017; 19: 4018
- 44 Liu C, Tan F-X, Zhou J. et al. Org Lett 2020; 22: 2173
- 45 Ronchi E, Paradine SM, Jacobsen EN. J Am Chem Soc 2021; 143: 7272
- 46 Jin MY, Zhen Q, Xiao D. et al. Nat. Commun. 2022; 13: 3276
- 47 Li C, Chen F, Mu Q, Xu C. Org Lett 2022; 24: 8774
- 48 Lv X, Liu C, Chen Y. et al. Org Lett 2024; 26: 1399
- 49 Wang Q, Chen X, Li G, Chen Q, Yang Y-F, She Y-B. J Org Chem 2019; 84: 13755
- 50 Huang M, Paretsky J, Schomaker JM. ChemCatChem 2020; 12: 3076
- 51 Trinh TA, Cherempei S, Rampon DS, Schomaker JM. Chem Sci 2025; 16: 4796
- 52 Marris ET, Rampon DS, Schomaker JM. Acc Chem Res 2024; 58: 231
- 53 Schroeder EZ, Lin C, Hu Y. et al. J Am Chem Soc 2024; 146: 22085
- 54 Liu W, Choi I, Zerull EE, Schomaker JM. Acs Catal 2022; 12: 5527
- 55 Fu Y, Zerull EE, Schomaker JM, Liu P. J Am Chem Soc 2022; 144: 2735
- 56 Trinh TA, Fu Y, Hu DB. et al. Chem Commun 2024; 60: 224
- 57 Jung H, Schrader M, Kim D, Baik M-H, Park Y, Chang S. J Am Chem Soc 2019; 141: 15356
- 58 Chen W, Xu H, Liu FX, Chen K, Zhou Z, Yi W. Angew Chem Int Ed 2024; 63: e202401498
- 59 Bai H-Y, Tan F-X, Liu T-Q. et al. Nat Commun 2019; 10: 3063
- 60 Liu C, Wang M, Liu S. et al. Angew Chem Int Ed 2021; 60: 5108
- 61 Li Z, Chen P, Ni Z. et al. Nat Commun 2025; 16: 735
- 62 Li W-T, Zhang Q, Hu M-Y, Zhu S-F. Org Lett 2023; 25: 5646
- 63 Hu M-Y, He Q, Fan S-J. et al. Nat Commun 2018; 9: 221
- 64 Chen S, He X, Jin Y, Lan Y, Shen X. Nat Commun 2022; 13: 3691
- 65 Zheng W-F, Chen J, Qi X, Huang Z. Nat Chem 2023; 15: 1672